Continuous-time Processes¶

The stochastic.processes.continuous module provides classes for generating discretely sampled continuous-time stochastic processes.

  • stochastic.processes.continuous.BesselProcess

  • stochastic.processes.continuous.BrownianBridge

  • stochastic.processes.continuous.BrownianExcursion

  • stochastic.processes.continuous.BrownianMeander

  • stochastic.processes.continuous.BrownianMotion

  • stochastic.processes.continuous.CauchyProcess

  • stochastic.processes.continuous.FractionalBrownianMotion

  • stochastic.processes.continuous.GammaProcess

  • stochastic.processes.continuous.GeometricBrownianMotion

  • stochastic.processes.continuous.InverseGaussianProcess

  • stochastic.processes.continuous.MixedPoissonProcess

  • stochastic.processes.continuous.MultifractionalBrownianMotion

  • stochastic.processes.continuous.PoissonProcess

  • stochastic.processes.continuous.SquaredBesselProcess

  • stochastic.processes.continuous.VarianceGammaProcess

  • stochastic.processes.continuous.WienerProcess

class stochastic.processes.continuous. BesselProcess ( dim=1, t=1, rng=None ) [source]

Bessel process.

_images/bessel_process.png

The Bessel process is the Euclidean norm of an \(n\)-dimensional Wiener process, e.g. \(\|\mathbf{W}_t\|\)

Generate Bessel process realizations using dim independent Brownian motion processes on the interval \([0,t]\)

Parameters
  • dim (int) – the number of underlying independent Brownian motions to use

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. BrownianBridge ( b=0, t=1, rng=None ) [source]

Brownian bridge.

_images/brownian_bridge.png

A Brownian bridge is a Brownian motion with a conditional value on the right endpoint of the process.

Parameters
  • b (float) – the right endpoint value of the Brownian bridge at time t

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property b

Right endpoint value.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times, b=None ) [source]

Generate a realization using specified times.

Parameters
  • times – a vector of increasing time values at which to generate the realization

  • b (float) – the right endpoint value for times [-1]

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. BrownianExcursion ( t=1, rng=None ) [source]

Brownian excursion.

_images/brownian_excursion.png

A Brownian excursion is a Brownian bridge from (0, 0) to (t, 0) which is conditioned to be nonnegative on the interval [0, t].

Generated using method by

  • Biane, Philippe. "Relations entre pont et excursion du mouvement Brownien reel." Ann. Inst. Henri Poincare 22, no. 1 (1986): 1-7.

  • Vervaat, Wim. "A relation between Brownian bridge and Brownian excursion." The Annals of Probability (1979): 143-149.

Parameters
  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate.

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. BrownianMeander ( t=1, rng=None ) [source]

Brownian meander process.

_images/brownian_meander.png

A Brownian motion conditioned such that the process is nonnegative.

Generated using method by

  • Williams, David. "Decomposing the Brownian path." Bulletin of the American Mathematical Society 76, no. 4 (1970): 871-873.

  • Imhof, J-P. "Density factorizations for Brownian motion, meander and the three-dimensional Bessel process, and applications." Journal of Applied Probability 21, no. 3 (1984): 500-510.

Parameters
  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

sample ( n, b=None ) [source]

Generate a realization.

Parameters
  • n (int) – the number of increments to generate

  • b (float) – the nonnegative right hand endpoint of the meander. If not provided, one is randomly selected from a \(\sqrt{2E}\) random variable where \(E\) is exponential.

sample_at ( times, b=None ) [source]

Generate a realization using specified times.

Parameters
  • times – a vector of increasing time values at which to generate the realization

  • b (float) – the right endpoint value for times [-1]. If not provided, one is randomly selected from a \(\sqrt{2tE}\) random variable where \(E\) is exponential and \(t\) is times [-1].

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. BrownianMotion ( drift=0, scale=1, t=1, rng=None ) [source]

Brownian motion.

_images/brownian_motion.png

A standard Brownian motion (discretely sampled) has independent and identically distributed Gaussian increments with variance equal to increment length. Non-standard Brownian motion includes a linear drift parameter and scale factor.

Parameters
  • drift (float) – rate of change of the expected value

  • scale (float) – scale factor of the Gaussian process

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property drift

Drift parameter.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property scale

Scale parameter.

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. CauchyProcess ( t=1, rng=None ) [source]

Symmetric Cauchy process.

_images/cauchy_process.png

The symmetric Cauchy process is a Brownian motion with a Levy subordinator using location parameter 0 and scale parameter \(t^2/2\).

Parameters
  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate.

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. FractionalBrownianMotion ( hurst=0.5, t=1, rng=None ) [source]

Fractional Brownian motion process.

_images/fractional_brownian_motion.png

A fractional Brownian motion (discretely sampled) has correlated Gaussian increments defined by Hurst parameter \(H\). When \(H = 1/2\), the process is a standard Brownian motion. When \(H > 1/2\), the increments are positively correlated. When \(H < 1/2\), the increments are negatively correlated.

Hosking's method:

  • Hosking, Jonathan RM. "Modeling persistence in hydrological time series using fractional differencing." Water resources research 20, no. 12 (1984): 1898-1908.

Davies Harte method:

  • Davies, Robert B., and D. S. Harte. "Tests for Hurst effect." Biometrika 74, no. 1 (1987): 95-101.

Parameters
  • hurst (float) – the Hurst parameter on the interval (0, 1)

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property hurst

Hurst parameter.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. GammaProcess ( mean=None, variance=None, rate=None, scale=None, t=1, rng=None ) [source]

Gamma process.

_images/gamma_process.png

A Gamma process (discretely sampled) is the summation of stationary independent increments which are distributed as gamma random variables. This class supports instantiation using the mean/variance parametrization or the rate/scale parametrization.

Parameters
  • mean (float) – mean increase per unit time; supply with variance

  • variance (float) – variance of increase per unit time; supply with mean

  • rate (float) – the rate of jump arrivals; supply with scale

  • scale (float) – the size of the jumps; supple with rate

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property mean

Mean increase per unit time.

property rate

Rate of jump arrivals.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times ) [source]

Generate a realization at specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property scale

Scale parameter for jump sizes.

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

property variance

Variance of increase per unit time.

class stochastic.processes.continuous. GeometricBrownianMotion ( drift=0, volatility=1, t=1, rng=None ) [source]

Geometric Brownian motion process.

_images/geometric_brownian_motion.png

A geometric Brownian motion \(S_t\) is the analytic solution to the stochastic differential equation with Wiener process \(W_t\):

\[dS_t = \mu S_t dt + \sigma S_t dW_t\]

and can be represented with initial value \(S_0\) in the form:

\[S_t = S_0 \exp \left( \left( \mu - \frac{\sigma^2}{2} \right) t + \sigma W_t \right)\]

Parameters
  • drift (float) – the parameter \(\mu\)

  • volatility (float) – the parameter \(\sigma\)

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property drift

Geometric Brownian motion drift parameter.

sample ( n, initial=1 ) [source]

Generate a realization.

Parameters
  • n (int) – the number of increments to generate.

  • initial (float) – the initial value of the process \(S_0\).

sample_at ( times, initial=1 ) [source]

Generate a realization using specified times.

Parameters
  • times – a vector of increasing time values at which to generate the realization

  • initial (float) – the initial value of the process \(S_0\).

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

property volatility

Geometric Brownian motion volatility parameter.

class stochastic.processes.continuous. InverseGaussianProcess ( mean=None, scale=1, t=1, rng=None ) [source]

Inverse Gaussian process.

_images/inverse_gaussian.png

An inverse Gaussian process has independent increments which follow an inverse Gaussian distribution with parameters defined by a monotonically increasing function, \(\Gamma(t)\). E.g. for increment \([s, t]\):

\(\mathcal{IG}(\Gamma(t) - \Gamma(s), \eta(\Gamma(t) - \Gamma(s))^2)\)

Uses a method for generating inverse Gaussian variates from:

  • Michael, John R., William R. Schucany, and Roy W. Haas. "Generating random variates using transformations with multiple roots." The American Statistician 30, no. 2 (1976): 88-90.

Parameters
  • mean (callable) – a callable with one argument \(\Gamma(t)\) such that \(\Gamma(t') > \Gamma(t) \forall t' > t\). Default is the identity function.

  • scale (float) – scale factor of the shape parameter of the inverse gaussian, or \(\eta\) from the above equation.

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property mean

Mean function.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property scale

Scale parameter.

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. MixedPoissonProcess ( rate_func, rate_args=None, rate_kwargs=None, rng=None ) [source]

Mixed poisson process.

_images/mixed_poisson_process.png

A mixed poisson process is a Poisson process for which the rate is a scalar random variate. The sample method will generate a random variate for the rate before generating a Poisson process realization with the rate. A Poisson process with rate \(\lambda\) is a count of occurrences of i.i.d. exponential random variables with mean \(1/\lambda\). Use the rate attribute to get the most recently generated random rate.

Parameters
  • rate_func (callable) – a callable to generate variates of the random rate

  • rate_args (tuple) – positional args for rate_func

  • rate_kwargs (dict) – keyword args for rate_func

  • rng (numpy.random.Generator) – a custom random number generator

property rate

The most recently generated rate.

Attempting to get the rate prior to generating a sample will raise an AttributeError .

property rate_args

Positional arguments for the rate function.

property rate_func

Current rate's distribution.

property rate_kwargs

Keyword arguments for the rate function.

sample ( n=None, length=None ) [source]

Generate a realization.

Exactly one of n and length must be provided. Generates a random variate for the rate, then generates a Poisson process realization using this rate.

Parameters
  • n (int) – the number of arrivals to simulate

  • length (int) – the length of time to simulate; will generate arrivals until length is met or exceeded.

class stochastic.processes.continuous. MultifractionalBrownianMotion ( hurst=None, t=1, rng=None ) [source]

Multifractional Brownian motion process.

_images/multifractional_brownian_motion.png

A multifractional Brownian motion generalizes a fractional Brownian motion with a Hurst parameter which is a function of time, \(h(t)\). If the Hurst is constant, the process is a fractional Brownian motion. If Hurst is constant equal to 0.5, the process is a Brownian motion.

Approximate method originally proposed for fBm in

  • Rambaldi, Sandro, and Ombretta Pinazza. "An accurate fractional Brownian motion generator." Physica A: Statistical Mechanics and its Applications 208, no. 1 (1994): 21-30.

Adapted to approximate mBm in

  • Muniandy, S. V., and S. C. Lim. "Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type." Physical Review E 63, no. 4 (2001): 046104.

Parameters
  • hurst (float) – a callable with one argument \(h(t)\) such that \(h(t') \in (0, 1) \forall t' \in [0, t]\). Default is \(h(t) = 0.5\).

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property hurst

Hurst function.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments

class stochastic.processes.continuous. PoissonProcess ( rate=1, rng=None ) [source]

Poisson process.

_images/poisson_process.png

A Poisson process with rate \(\lambda\) is a count of occurrences of i.i.d. exponential random variables with mean \(1/\lambda\). This class generates samples of times for which cumulative exponential random variables occur.

Parameters
  • rate (float) – the parameter \(\lambda\) which defines the rate of occurrences of the process

  • rng (numpy.random.Generator) – a custom random number generator

property rate

Rate parameter.

sample ( n=None, length=None ) [source]

Generate a realization.

Exactly one of n and length must be provided.

Parameters
  • n (int) – the number of arrivals to simulate

  • length (int) – the length of time to simulate; will generate arrivals until length is met or exceeded.

class stochastic.processes.continuous. SquaredBesselProcess ( dim=1, t=1, rng=None ) [source]

Squared Bessel process.

_images/squared_bessel_process.png

The square of a Bessel process: \(\|\mathbf{W}_t\|^2\).

The Bessel process is the Euclidean norm of an \(n\)-dimensional Wiener process, e.g. \(\|\mathbf{W}_t\|\)

Parameters
  • dim (int) – the number of underlying independent Brownian motions to use

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

property dim

Dimensions, or independent Brownian motions.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property t

End time of the process.

class stochastic.processes.continuous. VarianceGammaProcess ( drift=0, variance=1, scale=1, t=1, rng=None ) [source]

Variance Gamma process.

_images/variance_gamma_process.png

A variance gamma process has independent increments which follow the variance-gamma distribution. It can be represented as a Brownian motion with drift subordinated by a Gamma process:

\[\theta \Gamma(t; 1, \nu) + \sigma W(\Gamma(t; 1, \nu))\]

Parameters
  • drift (float) – the drift parameter of the Brownian motion, or \(\theta\) above

  • variance (float) – the variance parameter of the Gamma subordinator, or \(\nu\) above

  • scale (float) – the scale parameter of the Brownian motion, or \(\sigma\) above

  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

property drift

Drift parameter.

sample ( n ) [source]

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times ) [source]

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property scale

Scale parameter.

property t

End time of the process.

property variance

Variance parameter.

class stochastic.processes.continuous. WienerProcess ( t=1, rng=None ) [source]

Wiener process, or standard Brownian motion.

_images/wiener_process.png
Parameters
  • t (float) – the right hand endpoint of the time interval \([0,t]\) for the process

  • rng (numpy.random.Generator) – a custom random number generator

sample ( n )

Generate a realization.

Parameters

n (int) – the number of increments to generate

sample_at ( times )

Generate a realization using specified times.

Parameters

times – a vector of increasing time values at which to generate the realization

property t

End time of the process.

times ( n )

Generate times associated with n increments on [0, t].

Parameters

n (int) – the number of increments